Introduction
Resistance of microbes to commonly available antibiotics, or antimicrobial resistance, is a growing global public health crisis.1 A report commissioned by the Wellcome Trust and UK Department of Health estimated that by 2050, 10 million deaths annually worldwide will be attributed to antimicrobial resistance.2 The global burden of infectious disease is disproportionately concentrated in sub-Saharan Africa,3 yet there remains a lack of comprehensive antimicrobial resistance data from this setting. A recent WHO global report on surveillance of antimicrobial resistance lacked information from the majority of the countries in sub-Saharan African countries or lacked data on priority pathogens such as methicillin-resistant Staphylococcus aureus (MRSA).4 Appropriate treatment of infections in this region is hampered by poor access to and the prohibitive cost of diagnostic tests to identify pathogens and their antimicrobial susceptibility patterns, the dearth of adequately trained laboratory personnel, lack of microbiology laboratory infrastructure, inadequate consumables required for diagnostic testing or prescriber under-appreciation of the value of laboratory data to guide antimicrobial choice and duration.5 Current treatment guidelines in sub-Saharan Africa focus on empiric treatment of infections as there is often no local antimicrobial susceptibility data. However, this strategy can lead to adverse patient outcomes. For example, based on limited available antimicrobial resistance data, Zaidi et al 6 reported that 70% of neonatal bloodstream infections in resource-limited settings would not be adequately treated by the WHO-recommended empiric regimen of ampicillin and gentamicin. In these settings, there is a conundrum. On the one hand, inappropriate use of broad-spectrum antimicrobials drives antimicrobial resistance. On the other hand, in many resource-limited settings, lack of access to effective antimicrobials kill more people than antimicrobial resistance.1 These observations demonstrate the crucial need for antimicrobial susceptibility data to guide antimicrobial therapy in sub-Saharan African countries.
Mercy Ships is a non-governmental organisation that operates a self-contained mobile surgical unit equipped with a microbiology laboratory on a hospital ship, providing free surgical care in sub-Saharan Africa. Each year, this floating hospital visits a different host country, with patients presenting from urban, periurban and rural areas of the host country. Mercy Ships works closely with local governments and hospitals to reach potential patients throughout each host country. For each field service, patient screening and selection, surgeries, inpatient and outpatient postoperative care occur over a 10-month period in that country, after which the hospital and associated facilities are disinfected and shut down, and the ship returns to a shipyard for maintenance and repairs. A new field service then typically starts in a different country the following year. This organisational structure provides a unique opportunity to obtain antimicrobial susceptibility data from a number of resource-limited countries in sub-Saharan Africa without the added variability introduced by laboratory practices, personnel and equipment.
The primary aim of this study was to provide important descriptive data on rates of antimicrobial resistance from wound infections obtained during field services in the following six sub-Saharan African countries that have previously lacked or had very little published antimicrobial susceptibility data: Benin, Congo, Liberia, Madagascar, Sierra Leone and Togo. A secondary aim was to test the hypothesis that the proportion of antimicrobial-resistant clinical isolates differed between countries.